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anisotropic optical waveguides is described.
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positive definite is discussed and a possible + x 3y R

solution to the problem is presented.

3 BHZ 5 3Hz
Introduction uo [§§'(Ay Prr )+ 5; (Ax 5§—>

In the field of optical communications mono-
mode or quasi monomode guides have become im-

portant due to the growing interest in single [
mode fiber and integrated optical waveguide

structures. The analysis of such waveguides

is not an easy problem since in general the

geometry can be quite complicated and the where AX =
materials anisotropic. The finite element K2
method is probably the waveguide analysis o
method that is the most generally applicable

and most versatile. Once a finite element k
program has been written any geometry and o
material combination that can be suitably re-—
presented by a division in triangles can be
analysed. Although the finite element method The finite element formulation is based on
has been used for the eigenmode analysis of following variational expression for the
dielectric waveguides for more than 10 years?!, previous equations :

its application remains rather difficult. 1In

wavenumber in wvacuum

B = wavenumber of the guided mode.

this paper, the main problems associated with §L =0

the finite element approach are discussed and

solutions for some of those problems are L =~[} 1 [—e g2 - b H +ea (___)

proposed. In the next paragraph we consider 2 2 3

the most general case : an anisotropic guiding 2 2 2
region of arbitrary cross-section, index 3Ez BHZ
variation and an anisotropic substrate region. +€yAy 3y 3y
In this case a full vectorial analysis is

necessary and a suitable variational principle E Bh h

is presented. The appearance of higher order + Bija —2 _Z _a n_E . ]ds (1)
spurious numerical modes is discussed and a w | % 3x BY .Yy 9y 3%

possible solution to that problem is proposed.
In the case of isotropic waveguides two appro- If the waveguide is isotropic, eguation (1)
ximate scalar finite element analysis methods is reduced to the well known functional dis-
are presented. The accuracy of this method is cussed for example in references !, 2 and ®.
discussed and the very important computational Starting from equation (1) a general finite
advantages of this approach are illustrated element program for the analysis of anisotro-
by a number of examples. pic optical waveguides has been written. When
using such a program one is faced with a

Anisotropic waveguides number of problems and trade-offs.
In integrated optical devices that contain 1. The choice of the type of elements and the
electro optic or elasto optic interactions, number of elements needed to model the
optical wavequides are made on crystal sub- waveguide. The most simple triangular
strates. This means that the eigenmode analy-~ element assumes a linear interpolation
sis method has to be able to handle anisotropic between the field values at the corner
guides. If the crystal has a diagonal permit~ points of the triangle. Using this type
tivity tensor one can rewrite Maxwell equations of element one obtains large but sparse
in terms of the longitudinal components E, and matrix equations. By carefull numbering
H_ in the following way : of the nodal points, band matrices can be
z obtained. Instead of the linear elements,
5 one c¢an also use triangular elemen;s with
on leave from the National University of higher order polynomial interpolation
Zaire functions. The drawback is that the program-
Kinshasa Campus ming effort for those higher order elements
B.P. 255 is quite large. The advantage is that, one
Kinshasa XI ZAIRE can obtain accurate results with much smal-

ler matrix dimensions. We have found for
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example that in the case of a rectangular
overlay guide, where a small number of
triangles is sufficient to model the
geometry, one obtains about the same accu-
racy with 900 linear elements or 928 nodal
points as with only 9 fourth order elements
or 87 nodal points. Since the geometry or
index variation of some guides can be so
complicated, as to require a large number
of triangles, the finite element program
allows one to specify the desired element
order between 1 and 4.

The modelling of the infinite transverse
extent of the waveguide always represents
a problem. Three possible solutions are :
imposing an artificial zero boundary con-
dition for Ez and Hz at a large enough

distance from the guide, use sector ele-
ments3 that assume some exponential decay
for the field or implementing the radiation
condition through an integral equation at
the boundary of the finite element region.
The last method, although exact, leads to
such a complicated set of equations, that
it is numerically impractical to use. The
sector elements would be ideal if one
could find the exponential decay factor,
as a result of the variational process.
Since this leads to non linear equations
one has to determine the best exponential
decay by trial and error for each point
on the dispersion characteristic. The
first method has as advantage its simpli-
city. It has been used for the calcula-
tion of the results presented in this pa-
per but care has been taken to make sure
that the influence of the position of this
zero boundary condition on the obtained
results, was negligible.
The most serious diificulty in using the
finite element analysis, for open dielec-
tric waveguides, 1s the appearance of spu-
rious, non physical modes. This means
that a number of the eigenvalues and eigen-
vectors of the matrix eigenvalue problem,
do not represent physical modes of the
waveguide, but are spurious results intro-
duced by the numerical technique. The
reason for the appearance of the spurious
modes is the fact that the functional (1)
is not positive definite since A_ or A
o , X 24y
can be positive or negative, dep€nding
whether the element is in the guide or in
the substrate. If one is interested only
in the calculation of the lowest propaga-
ting mode, the appearance of those spu-
rious modes is not much of a problem.
However, if one wants to compute a set of
higher order modes, it becomes very dif-
ficult to distinguish between the spurious
and the physical modes of the guide.
However, we have found that by explicitely
enforcing the continuity of the tangential
components of the transversal fields at
the interfaces, by means of Lagrange multi-
pliers, most of the spurious modes disap-
pear. This can for example be seen on
figure 1. The circles represent all the
solutions of the classic finite element
program, while the results of the finite
element program with continuity conditions
are indicated by crosses. One can clearly
see that all the results of this last
program, lie on the dispersion characteris-—
tic of the modes of the guide. The dis-
advantage of this solution lies in the
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greatly increased complexity of the program
and of the numerical operations that have
to be done for enforcing those continuity
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Fig. 1 Dispersion characteristic of a
rectangular overlay guide
conditions. For very complicated guide

geometries for example the accumulation of
rounding errors becomes a problem. If the
guide is isotropic or if it can be approxi-
mated by an eguivalent isotropic guide, we

propose in the next paragraph an approximate

finite element formulation that allows a
much easier and faster calculation of the
different modes of the guide.

Approximate scalar finite element formulations

If the optical guide is isotropic, we propose
two different scalar formulations, that yield
excellent approximations for the EH and HE
type of mode of an integrated optical wave-
guide. As an example we consider a rectangu-
lar overlay waveguide with height a and width
2a. The refractive index of the guide and

of the substrate is respectively 1.5 and 1.45.
Using the vectorial finite element program
described in previous paragraph and a divi-
gion consisting of 9 fourth order triangular
elements, we find following points of the
dispersion characteristic of the lowest mode :

HE mode : koa = 11.4512
Ra = 16.9478
EH mode : koa = 11,7012
Ba = 17.3178

The scalar approximation for the HE modes is
based on the following functional :

2 2
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This functional has the continuity of %% as
natural boundary conditions. A finite

element program based on functional (2)
yields P as the eigenvalue of the matrix
equation for a given k_. In the case of an
infinite slab guide equation (2) gives an
exact variational expression for the TE slab

modes. If we consider again the rectangular
overlay guide one finds following points of
the dispersion characteristic

koa = 11.4512

Ba = 16,9481

identical to the result obtai-
mode with the full vectorial

This is almost
ned for the HE
analysis.

The scalar approximation for the EH modes is
based on the following functional :
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(3)
This functional has the continuity of (lj %%)
n

as natural boundary condition. A finite element
program based on this functional yields ko as
eigenvalue of the matrix equation for a given
B. In the case of an infinite slab guide,
equation (3) gives an exact variational expres-
sion for the TM slab modes. Considering again
the previous rectangular overlay guide, one
finds following points on the dispersion

Fig. 2 Contour lines for E% and H, for the
lowest order mode of a rectangular

characteristic : overlay guide
koa = 11.7086
B a=17.3178

This is almost identical to the result obtained
for the EH modes with the full vectorial ana-
lysis.

From those examples one can see that the two
scalar finite element formulations form an
excellent approximation for the HE and EH type
modes of the optical waveguide, even in the
case where the width to height ratio of the
guide is small. The main advantages of this
scalar approximation are :

1. The dimensions of the matrices are reduced
by a factor of 2, which meang a reduction
of the computer time by approximately a
factor of 4.

2. The two scalar functionals are positive
definite (or can immediately be made posi-
tive definite). All the eigenvalues are
therefore positive and each one corresponds
to a physical mode of the guide. This means
that one can now easily compute the higher
order modes of the guide.

To illustrate the use of those scalar finite
element approximations, a number of modes of
two different waveguides have been calculated.
First we consider again the rectangular overlay
guide described earlier. In fig. 3 contour
plots are shown for the 5 lowest order HE modes
of the guide. The normalised wavenumber k,a

for all modes is equal to 25. As a second
example we consider the trapezoidal overlay
guide shown in fig. 4. Such a guide is obtained Fig. 3 Five lowest order modes of rectangular
when the guide material is not completely overlay guide

etched away so that a thin layer remains over
the complete surface of the waveguide. One can
see how the four lowest order modes of such a
guide are easily computed using only 12 fourth
order elements.
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Fig. 4 Four lowest order modes of trapezoidal
guide
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