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Summary

A finite element program for the analysis of

anisotropic optical waveguides is described.
The appearance of spurious numerical modes

due to the fact that the functional is non
positive definite is discussed and a possible

solution to the problem is presented.

Introduction

In the field of optical communications mono-

mode or quasi monomode guides have become im-

portant due to the growing interest in single

mode fiber and integrated optical waveguide

structures. The analysis of such waveguides
is not an easy problem since in general the

geometry can be quite complicated and the

materials anisotropic. The finite element
method is probably the waveguide analysis

method that is the most generally applicable
and most versatile. Once a finite element
program has been written any geometry and
material combination that can be suitably re-

presented by a division in triangles can be
analysed. Although the finite element method

has been used for the eigenmode analysis of
dielectric waveguides for more than 10 yearslr

its application remains rather difficult. In

this paper, the main problems associated with
the finite element approach are discussed and
solutions for some of those problems are

proposed. In the next paragraph we consider

the most general case : an anisotropic guiding
region of arbitrary cross-section, index

variation and an anisotropic substrate region.
In this case a full vectorial analysis is

necessary and a suitable variational principle
is presented. The appearance of higher order
spurious numerical modes is discussed and a

possible solution to that problem is proposed.
In the case of isotropic waveguides two appro-

ximate scalar finite element analysis methods

are presented. The accuracy of this method is
discussed and the very important computational
advantages of this approach are illustrated

by a number of examples.

Anisotropic waveguides

In integrated optical devices that contain
electro optic or elasto optic interactions,
optical waveguides are made on crystal sub-

strates. This means that the eigenmode analy-
sis method has to be able to handle anisotropic
guides. If the crystal has a diagonal permit-

tivity tensor one can rewrite Maxwell equations

in terms of the longitudinal components Ez and
Hz in the following way :
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the guided mode.

The finite element formulation is based on
following variational expression for the

previous equations :
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If the waveguide is isotropic, equation (1)

is reduced to the well known functional dis-

cussed for example in references 1 ~ 2 and 3.
Starting from equation (1) a general finite

element program for the analysis of anisotro-
pic optical waveguides has been written. When

using such a program one is faced with a
number of problems and trade-offs.
1. The cho~ce of the type of elements and the

number of elements needed to model the
waveguide. The most simple triangular

element assumes a linear interpolation
between the field values at the corner

points of the triangle. Using this type

of element one obtains large but sparse

matrix equations. By carefull numbering

of the nodal points, band matrices can be
obtained. Instead of the linear elements,
one can also use triangular elements with
higher order polynomial interpolation

functions. The drawback is that the program-
ming effort for those higher order elements

is quite large. The advantage is that, one

can obtain accurate results with much smal-
ler matrix dimensions. We have found for
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example that in the case of a rectangular

overlay guide, where a small number of

triangles is sufficient to model the

geometry, one obtains about the same accu-

racy with 900 linear elements or 928 nodal
points as with only 9 fourth order elements
or 87 nodal points. Since the geometry or

index variation of some guides can be so
complicated, as to require a large number

of triangles, the finite element program

allows one to specify the desired element

order between 1 and 4.
2. The modelling of the infinite transverse

extent of the waveguide always represents

a problem. Three possible solutions are :

imposing an artificial zero boundary con-

dition for Ez and Hz at a lar9e enough

distance from the guide, use sector ele-
ments3 that assume some exponential decay

for the field or implementing the radiation

condition through an integral equation at
the boundary of the finite element region.
The last method, although exact, leads to

such a complicated set of equations, that

it is numerically impractical to use. The

sector elements would be ideal if one

could find the exponential decay factor,
as a result of the variational process.

Since this leads to non linear equations
one has to determine the best exponential

decay by trial and error for each point
on the dispersion characteristic. The

first method has as advantage its simpli-
city. It has been used for the calcula-

tion of the results presented in this pa-
per but care has been taken to make sure

that the influence of the position of this

zero boundary condition on the obtained
results, was negligible.

3. The most serious difficulty in using the
finite element analysis, for open dielec-

tric waveguides, is the appearance of spu-

rious, non physical modes. This means

that a number of the eigenvalues and eigen-

vectors of the matrix eigenvalue problem,

do not represent physical modes of the

waveguide, but are spurious results intro-
duced by the numerical technique. The
reason for the appearance of the spurious

modes is the fact that the functional (1)
is not positive definite since Ax or A

can be positive or negative, depending
whether the element is in the guide or in
the substrate. If one is interested only
in the calculation of the lowest propaga-
ting mode, the appearance of those spu-
rious modes is not much of a problem.

However, if one wants to compute a set of

higher order modes, it becomes very dif-

ficult to distinguish between the spurious
and the physical modes of the guide.
However, we have found that by explicitly

enforcing the continuity of the tangential
components of the transversal fields at

the interfaces, by means of Lagrange multi-
pliers, most of the spurious modes disap-
pear. This can for example be seen on
figure 1. The circles represent all the
solutions of the classic finite element
program, while the results of the finite

element program with continuity conditions
are indicated by crosses. One can clearly
see that all the results of this last

program, lie on the dispersion characteris-
tic of the modes of the guide. The dis-
advantage of this solution lies in the

greatly increased complexity of the program

and of the numerical operations that have
to be done for enforcing those continuity
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Fig. L u~spersion characteristic of a

rectangular overlay guide

conditions. For very complicated guide
geometries for example the accumulation of

rounding errors becomes a problem. If the

guide is isotropic or if it can be approxi-
mated by an equivalent isotropic guide, we

propose in the next paragraph an approximate
finite element formulation that allows a

much easier and faster calculation of the
different modes of the guide.

Approximate scalar finite element formulations

If the optical guide is isotropic, we propose

two different scalar formulations, that yield
excellent approximations for the EH and HE

type of mode of an integrated optical wave-
guide. As an example we consider a rectangu-

lar overlay waveguide with height a and width
2a. The refractive index of the guide and

of the substrate is respectively 1,5 and 1.45.
Using the vectorial finite element program
described in previous paragraph and a divi-
sion consisting of 9 fourth order triangular

elements, we find following points of the
dispersion characteristic of the lowest mode :

HE mode : koa = 11.4512

Ba = 16,9478

EH mode : koa = 11.7012

Ba = 17.3178

The scalar approximation for the HE modes is
based on the following functional :

This functional has the continuity of ~ as

natural boundary conditions. A finite

element program based on functional (2)

yields ~ as the eigenvalue of the matrix
equation for a given k . In the case of an

infinite slab guide eq~ation (2) 9iVes an

exact variational expression for the TE slab
modes . If we consider again the rectangular

overlay guide one finds following points of
the dispersion characteristic :

koa = 11.4512

Ba = 16.9481

This is almost identical to the result obtai–

ned for the HE mode with the full vectorial
analysis.
The scalar approximation for the EH modes is

based on the following functional :
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as natural boundary condition. A finite element
program based on this functional yields k. as
eigenvalue of the matrix equation for a given

%. In the case of an infinite slab guide,
equation (3) gives an exact variational expres-
sion for the TM slab modes. Considering aaain., .J–

the previous rectangular overlay guide, one
finds following points on the dispersion

characteristic :

koa = 11.7086

B a = 17.3178

This is almost identical to the result obtained
for the EH modes with the full vectorial ana–

lysis.
From those examples one can see that the two

scalar finite element formulations form an

excellent approximation for the HE and EH type

modes of the optical waveguide, even in the

case where the width to height ratio of the

guide is small. The main advantages of this
scalar approximation are :

1. The dimensions of the matrices are reduced
by a factor of 2, which means a reduction
of the computer time by approximately a

factor of 4.
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L. The two scalar functional are positive

definite (or can immediately be made posi- <Q3
. .

tive definite) .

3

All the eigenvalues are

therefore positive and each one corresponds
to a physical mode of the quide. This means

that one can now easily co;pute the higher
order modes of the guide.

To illustrate the use of those scalar finite

element approximations, a number of modes of

two different waveguides have been calculated.

First we consider again the rectangular overlay

guide described earlier. In fig. 3 contour

plots are shown for the 5 lowest order HE modes

of the guide. The normalised wavenumber kQa

for all modes is equal to 25. As a second

example we consider the trapezoidal overlay

guide shown in fig. 4. Such a guide is obtained
when the guide material is not completely
etched away so that a thin layer remains over

the complete surface OE the waveguide. One can
see how the four lowest order modes of such a

guide are easily computed using only 12 fourth
order elements.
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